10 research outputs found

    Resilience-oriented control and communication framework for cyber-physical microgrids

    Get PDF
    Climate change drives the energy supply transition from traditional fossil fuel-based power generation to renewable energy resources. This transition has been widely recognised as one of the most significant developing pathways promoting the decarbonisation process toward a zero-carbon and sustainable society. Rapidly developing renewables gradually dominate energy systems and promote the current energy supply system towards decentralisation and digitisation. The manifestation of decentralisation is at massive dispatchable energy resources, while the digitisation features strong cohesion and coherence between electrical power technologies and information and communication technologies (ICT). Massive dispatchable physical devices and cyber components are interdependent and coupled tightly as a cyber-physical energy supply system, while this cyber-physical energy supply system currently faces an increase of extreme weather (e.g., earthquake, flooding) and cyber-contingencies (e.g., cyberattacks) in the frequency, intensity, and duration. Hence, one major challenge is to find an appropriate cyber-physical solution to accommodate increasing renewables while enhancing power supply resilience. The main focus of this thesis is to blend centralised and decentralised frameworks to propose a collaboratively centralised-and-decentralised resilient control framework for energy systems i.e., networked microgrids (MGs) that can operate optimally in the normal condition while can mitigate simultaneous cyber-physical contingencies in the extreme condition. To achieve this, we investigate the concept of "cyber-physical resilience" including four phases, namely prevention/upgrade, resistance, adaption/mitigation, and recovery. Throughout these stages, we tackle different cyber-physical challenges under the concept of microgrid ranging from a centralised-to-decentralised transitional control framework coping with cyber-physical out of service, a cyber-resilient distributed control methodology for networked MGs, a UAV assisted post-contingency cyber-physical service restoration, to a fast-convergent distributed dynamic state estimation algorithm for a class of interconnected systems.Open Acces

    Event-triggered distributed MPC for resilient voltage control of an islanded microgrid

    Full text link
    This paper addresses the problem of distributed secondary voltage control of an islanded microgrid (MG) from a cyber-physical perspective. An event-triggered distributed model predictive control (DMPC) scheme is designed to regulate the voltage magnitude of each distributed generators (DGs) in order to achieve a better trade-off between the control performance and communication and computation burdens. By using two novel event triggering conditions that can be easily embedded into the DMPC for the application of MG control, the computation and communication burdens are significantly reduced with negligible compromise of control performance. In addition, to reduce the sensor cost and to eliminate the negative effects of non-linearity, an adaptive non-asymptotic observer is utilized to estimate the internal and output signals of each DG. Thanks to the deadbeat observation property, the observer can be applied periodically to cooperate with the DMPC-based voltage regulator. Finally, the effectiveness of the proposed control method has been tested on a simple configuration with 4 DGs and the modified IEEE-13 test system through several representative scenarios

    Cyber-Resilient Self-Triggered Distributed Control of Networked Microgrids Against Multi-Layer DoS Attacks

    Get PDF
    Networked microgrids with high penetration of distributed generators have ubiquitous remote information exchange, which may be exposed to various cyber security threats. This paper, for the first time, addresses a consensus problem in terms of frequency synchronisation in networked microgrids subject to multi-layer denial of service (DoS) attacks, which could simultaneously affect communication, measurement and control actuation channels. A unified notion of Persistency-of-Data-Flow (PoDF) is proposed to characterise the data unavailability in different information network links, and further quantifies the multi-layer DoS effects on the hierarchical system. With PoDF, we provide a sufficient condition of the DoS attacks under which the consensus can be preserved with the proposed edgebased self-triggered distributed control framework. In addition, to mitigate the conservativeness of offline design against the worst-case attack across all agents, an online self-adaptive scheme of the control parameters is developed to fully utilise the latest available information of all data transmission channels. Finally, the effectiveness of the proposed cyber-resilient self-triggered distributed control is verified by representative case studies

    Fixed-Time Convergent Distributed Observer Design of Linear Systems: A Kernel-Based Approach

    Get PDF
    The robust distributed state estimation for a class of continuous-time linear time-invariant systems is achieved by a novel kernel-based distributed observer, which, for the first time, ensures fixed-time convergence properties. The communication network between the agents is prescribed by a directed graph in which each node involves a fixed-time convergent estimator. The local observer estimates and broadcasts the observable states among neighbours so that the full state vector can be recovered at each node and the estimation error reaches zero after a predefined fixed time in the absence of perturbation. This represents a new distributed estimation framework that enables faster convergence speed and further reduced information exchange compared to a conventional Luenberger-like approach. The ubiquitous timevarying communication delay across the network is suitably compensated by a prediction scheme. Moreover, the robustness of the algorithm in the presence of bounded measurement and process noise is characterised. Numerical simulations and comparisons demonstrate the effectiveness of the observer and its advantages over the existing methods

    A Wireless-Assisted Hierarchical Framework to Accommodate Mobile Energy Resources

    Full text link
    The societal decarbonisation fosters the installation of massive renewable inverter-based resources (IBRs) in replacing fossil fuel based traditional energy supply. The efficient and reliable operation of distributed IBRs requires advanced Information and Communication Technologies (ICT) , which may lead to a huge infrastructure investment and long construction time for remote communities. Therefore, to efficiently coordinate IBRs, we propose a low-cost hierarchical structure, especially for remote communities without existing strong ICT connections, that combines the advantages of centralised and distributed frameworks via advanced wireless communication technologies. More specifically, in each region covered by a single cellular network, dispatchable resources are controlled via a regional aggregated controller, and the corresponding regional information flow is enabled by a device-to-device (D2D) communication assisted wireless network. The wireless network can fully reuse the bandwidth to improve data flow efficiency, leading to a flexible information structure that can accommodate the plug-and-play operation of mobile IBRs. Simulation results demonstrate that the proposed wireless communication scheme significantly improves the utilization of existing bandwidth, and the dynamically allocated wireless system ensures the flexible operation of mobile IBRs

    Enhancing Cyber-Resiliency of DER-based SmartGrid: A Survey

    Full text link
    The rapid development of information and communications technology has enabled the use of digital-controlled and software-driven distributed energy resources (DERs) to improve the flexibility and efficiency of power supply, and support grid operations. However, this evolution also exposes geographically-dispersed DERs to cyber threats, including hardware and software vulnerabilities, communication issues, and personnel errors, etc. Therefore, enhancing the cyber-resiliency of DER-based smart grid - the ability to survive successful cyber intrusions - is becoming increasingly vital and has garnered significant attention from both industry and academia. In this survey, we aim to provide a systematical and comprehensive review regarding the cyber-resiliency enhancement (CRE) of DER-based smart grid. Firstly, an integrated threat modeling method is tailored for the hierarchical DER-based smart grid with special emphasis on vulnerability identification and impact analysis. Then, the defense-in-depth strategies encompassing prevention, detection, mitigation, and recovery are comprehensively surveyed, systematically classified, and rigorously compared. A CRE framework is subsequently proposed to incorporate the five key resiliency enablers. Finally, challenges and future directions are discussed in details. The overall aim of this survey is to demonstrate the development trend of CRE methods and motivate further efforts to improve the cyber-resiliency of DER-based smart grid.Comment: Submitted to IEEE Transactions on Smart Grid for Publication Consideratio

    Balancing privacy and access to smart meter data: an Energy Futures Lab briefing paper

    Get PDF
    Digitalising the energy system is expected to be a vital component of achieving the UK’s climate change targets. Smart meter data, in particular, is seen a key enabler of the transition to more dynamic, cost-effective, cost-reflective, and decarbonised electricity. However, access to this data faces a challenge due to consumer privacy concerns. This Briefing Paper investigates four key elements of smart meter data privacy: existing data protection regulations; the personal information embedded within smart meter data; consumer privacy concerns; and privacy-preserving techniques that could be incorporated alongside existing mechanisms to minimise or eliminate potential privacy infringements

    A resilience-oriented centralised-to-decentralised framework for networked microgrids management

    No full text
    This paper proposes a cyber-physical cooperative mitigation framework to enhance power systems resilience under extreme events, e.g., earthquakes and hurricanes. Extreme events can simultaneously damage the physical-layer electric power infrastructure and the cyber-layer communication facilities. Microgrid (MG) has been widely recognised as an effective physical-layer response to such events, however, the mitigation strategy in the cyber lay is yet to be fully investigated. Therefore, this paper proposes a resilience-oriented centralised-to-decentralised framework to maintain the power supply of critical loads such as hospitals, data centers, etc., under extreme events. For the resilient control, controller-to-controller (C2C) wireless network is utilised to form the emergency regional communication when centralised base station being compromised. Owing to the limited reliable bandwidth that reserved as a backup, the inevitable delays are dynamically minimised and used to guide the design of a discrete-time distributed control algorithm to maintain post-event power supply. The effectiveness of the cooperative cyber-physical mitigation framework is demonstrated through extensive simulations in MATLAB/Simulink
    corecore